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Abstract. We investigate the variety of a portfolio of stocks in normal and extreme days of market activity.
We show that the variety carries information about the market activity which is not present in the single-
index model and we observe that the variety time evolution is not time reversal around the crash days.
We obtain the theoretical relation between the square variety and the mean return of the ensemble return
distribution predicted by the single-index model. The single-index model is able to mimic the average
behavior of the square variety but fails in describing quantitatively the relation between the square variety
and the mean return of the ensemble distribution. The difference between empirical data and theoretical
description is more pronounced for large positive values of the mean return of the ensemble distribution.
Other significant deviations are also observed for extreme negative values of the mean return.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 89.90.+n Other topics in areas of applied and interdisciplinary physics

1 Introduction

Financial markets can be regarded as model complex sys-
tems [1]. They are open systems composed of many non-
equivalent sub-units interacting in a nonlinear way. They
are continuously monitored and a huge amount of carefully
recorded financial data are now accessible for analysis and
modeling of market microstructure. This allows to perform
empirical analyses elucidating statistical regularities that
can be used to test models of financial activities [2–4].
These tests provide information about the strengths and
weaknesses of the various models pointing out the aspects
that need to be improved to obtain a better model.

Stylized facts observed in financial markets mainly
refer to the statistical properties of asset returns and
volatility and to the degree and nature of cross-correlation
between different assets traded synchronously or quasi
synchronously and belonging to given portfolios. Recently,
we have proposed to model the different behavior observed
in the stock returns of a portfolio by considering the sta-
tistical properties (shape, moments, etc.) of the ensemble
return distribution of stocks simultaneously traded in a
market. Our studies [5–7] have shown that the statistical
properties of the ensemble return distribution are roughly
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conserved in normal days of activity of the market whereas
during crash and rally they change in a systematic way.

The single-index model [8,9] is not adequate to model
some of these findings. Specifically, it fails in describing
the statistical properties of the standard deviation (called
by us variety) of the ensemble return distribution and it
misses to quantitatively reproduce the symmetry breaking
of the empirical return distributions observed during crash
and rally days [6]. On the other hand the same model is
a rather attractive because it describes pretty well several
stylized facts related to the first moment of the ensemble
return distribution.

In the present study we investigate the empirical be-
havior of the variety with respect to the theoretical pre-
dictions of the single-index model. We find that variety is
only mimicked at a “zero-order” by the single-index model
and significant discrepancies are observed in the statisti-
cal properties of this variable both in extreme days and in
periods of normal activity of the market.

2 The ensemble return distribution in normal
and extreme days

In our empirical analysis we investigate the statistical
properties of the ensemble return distribution obtained
for a portfolio of stocks traded in a financial market.
The investigated market is the New York Stock Exchange
(NYSE) during the 12-year period from January 1987 to
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December 1998. This time period comprises 3032 trading
days. Here we present empirical analyses of two different
sets of stocks. The first is the set of all the stocks traded
in the NYSE. For this statistical ensemble the number of
stocks is not fixed because the total number of assets n
traded in the NYSE is rapidly increasing in the investi-
gated time period and ranges from 1128 in 1987 to 2788
in 1998. The second set is the set of 1071 stocks which are
continuously traded in the NYSE in the considered period.
The total number of financial records processed exceeds 6
millions.

The variable investigated in our analysis is the daily
price return, which is defined as

Ri(t) ≡
Yi(t)− Yi(t− 1)

Yi(t− 1)
, (1)

where Yi(t) is the closure price of ith asset at day t
(t = 1, 2, ...). In our study we consider only the trading
days and we remove the weekends and the holidays from
the data set. Moreover we do not consider price returns
which are in absolute values greater than 50% because
some of these returns might be attributed to errors in the
database and may affect in a considerable way the sta-
tistical analyses. For each set of stocks, we extract the n
returns of the n stocks at each trading day and we consider
the probability density function (pdf) of price returns. The
distribution of these returns describes the general activity
of the market at the selected trading day. In the periods of
normal activity of the market, the central part of the dis-
tribution is conserved for a long time. In these periods the
shape of the distribution is systematically non-Gaussian
and approximately symmetrical [7]. During crashes and
rallies the ensemble return distribution changes abruptly
shape. In a previous study [6] we have shown that the en-
semble return distribution becomes asymmetric in critical
days. Specifically, in crash days the ensemble return dis-
tribution becomes negatively skewed whereas in rally days
the distribution becomes positively skewed. The change of
the symmetry properties is not the only change of the pdf
observed in crash and rally days. In fact during critical
days the central moments of the pdf assume values rather
different from the typical ones.

To illustrate the change of the distribution in crash
and rally days and in the nearby time periods we select
the three biggest crashes present during the time period of
our database. They correspond to – (i) the black Monday
crash of 19th October 1987 when the Standard and Poor’s
500 index had a −20.4% return, (ii) the crash of 27th Oc-
tober 1997 when the Standard and Poor’s 500 index had
a −6.9% return, and (iii) the crash occurring at 31st Au-
gust 1998 when the Standard and Poor’s 500 index had a
−6.8% return. Related to these crash days there are also
relevant rally days. This is because the days of greatest
rallies of our database occur just one or few days after
crashes. In the 1987 time period, in addition to the rally
days, a second crash of −8.3% of the Standard and Poor’s
500 index occurred at 26th October 1987. The statistical
behavior of stock market indices during crashes has also

Fig. 1. Contour plots of the logarithm of the ensemble return
distribution in a 200 trading days time interval centered at
19 October 1987 (top panel), 27 October 1997 (middle panel),
and 31 August 1998 (bottom panel). In all the three panels we
set the value 0 in the abscissa at the crash day. The contour
plots are obtained for equidistant intervals of the logarithmic
probability density. The brightest area of the contour plots
corresponds to the most probable value.

been investigated under a different perspective in refer-
ence [10].

Figure 1 shows the contour plot of the logarithm of en-
semble return distribution of the three above mentioned
crash days in a 200 trading days time interval centered
at day of the crisis. The contour plots of the three crises
show analogies and differences. An analogy is observed by
considering that the time period after the crisis is clearly
characterized by a degree of high instability in the shape
of the ensemble return distribution. This is shown by the
behavior of the contour lines which are more parallel be-
fore crises (negative values of the trading day index in
Fig. 1) than after crises. An “aftershock” period lasting
more than 50 trading days is clearly detected in two of
the three analyzed cases, specifically in the 1987 and in
the 1998 crises. Another aspect of this analogy is that the
shape of the distribution tends to fluctuate significantly



F. Lillo and R.N. Mantegna: Variety of a financial portfolio and the single-index model 505

−100 −50 0 50 100
trading day

0.01

0.03

0.05

σ(
t)

−100 −50 0 50 100
0.01

0.03

0.05

σ(
t)

−100 −50 0 50 100
0.01

0.05

0.09

σ(
t)

Fig. 2. Time series of the variety σ(t) of the ensemble return
distribution in a 200 trading days time interval centered at 19
October 1987 (top panel), 27 October 1997 (middle panel), and
31 August 1998 (bottom panel). In all the three panels we set
the value 0 in the abscissa at the crash day. It should be noted
that the scale of the y-axis is twice larger for the 1987 crisis.

during the days immediately after the crises. A difference
can be noted by considering that the onset of the crises is
almost abrupt for the 1987 and for the 1997 crises whereas
a progressive modification of the shape of the ensemble re-
turn distribution is detected in the time period before the
1998 crisis.

In order to characterize more quantitatively the ensem-
ble return distribution at day t, we extract the first two
central moments at each of the 3032 trading days. Specif-
ically, we consider the mean and the standard deviation
of the ensemble return distribution defined as

µ(t) =
1
n

n∑
i=1

Ri(t), (2)

σ(t) =

√√√√ 1
n

(
n∑
i=1

(Ri(t)− µ(t))2

)
. (3)

The mean value of price returns µ(t) quantifies the
general trend of the market at day t. The standard de-
viation σ(t), i.e. the variety [5,7] of the ensemble return
distribution, measures its width. A large value of σ(t) indi-
cates that different companies are characterized by rather
different returns at day t. In fact in days of high variety
some companies perform great gains whereas others have
great losses. The variety of price returns is not constant
and fluctuates in time.

Figure 2 shows the variety as a function of the trading
day index for the same crises shown in Figure 1. The be-
havior qualitatively observed in Figure 1 is now quantita-
tively shown in Figure 2. The abrupt onset of the 1987 and
1997 crises is rather clear, whereas a progressive increase
of the variety is observed before the 1998 crisis. The pres-
ence of an aftershock period longer than 50 trading days is
observed in all three cases. Wild fluctuations of the variety

are observed immediately after the 1987 and 1998 crises.
In summary during a crisis and in a long period after the
crisis the variety of a portfolio of stocks increases signifi-
cantly. It is worth pointing out that the highest value of
the variety is not observed at the crash day but rather at
the day immediately after in all the considered cases.

The variety of a portfolio of stocks is not a variable that
is invariant to time reversal. Indeed, our analysis of these
case studies suggests that the behavior of the market just
before and just after crises is rather different with respect
to the variety of the portfolio of stocks.

3 Single-index model

We now investigate the theoretical properties of the vari-
ety of a portfolio of stocks described in terms of a single-
index model. The theoretical predictions will be compared
with the results of our empirical observations and with
surrogate data in Section 3.2.

The single-index model [8,9] is a basic model of price
dynamics in financial markets. It assumes that the returns
of all stocks are controlled by one factor, usually called the
“market”. In this model, for any stock i we have

Ri(t) = αi + βiRM (t) + εi(t), (4)

where Ri(t) and RM (t) are the return of the stock i and
of the “market” at day t respectively, αi and βi are two
real parameters and εi(t) is a zero mean noise term char-
acterized by a variance equal to σ2

εi . The noise terms of
different stocks are assumed to be uncorrelated for i 6= j.
Moreover the covariance between RM (t) and εi(t) is set to
zero for any i. In this model each stock is correlated with
the market and the presence of such a correlation induces
a correlation between any pair of stocks.

There are several possible choices concerning the sta-
tistical properties of the noise terms εi. The customary
choice is a Gaussian statistics [8,9] but also non-Gaussian
statistics [11] has been considered. For the moment we do
not specify the statistical properties of the noise terms ex-
plicitly and we only assume that the variance of each εi(t)
is finite.

3.1 Central moments in the single-index model

In our study we perform both ensemble and time averages.
In our notation 〈...〉 indicates ensemble averaged quantity,
whereas [...] indicates time averaged quantity.

The mean of the ensemble return distribution µ(t) ≡
〈Ri(t)〉 is given by

µ(t) = 〈αi〉+ 〈βi〉RM (t) + 〈εi(t)〉. (5)

The quantity 〈εi(t)〉 is proportional to the sum of n un-
correlated random variables with zero mean and finite
variance. The central limit theorem ensures that 〈εi(t)〉 is
Gaussian distributed with zero mean and variance given
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by 〈σ2
εi〉/n. The time average of the random variable µ(t)

is given by

[µ(t)] = 〈αi〉+ 〈βi〉[RM (t)]. (6)

The determination of higher moments requires the calcu-
lation of time and ensemble variances of random variables.
In the following, for a random variable xi we indicate its
ensemble variance as 〈∆x2

i 〉 ≡ 〈(xi − 〈xi〉)2〉 whereas for
a random variable x(t) we indicate its time variance as
[∆x(t)2] ≡ [(x(t) − [x(t)])2].

The time variance of µ(t) is

[∆µ(t)2] = 〈βi〉2[∆RM (t)2] +
〈σ2
εi〉
n
· (7)

In deriving this equation we use the property that the
covariance between RM(t) and εi(t) is set to zero for any i.
In a similar way we compute 〈R2

i (t)〉. By assuming that the
ensemble covariance between two of αi, βi and εi is zero,
we find that the square of the variety σ(t) of equation (3)
is equal to

σ2(t) = 〈∆α2
i 〉+ 〈∆β2

i 〉R2
M (t) + 〈ε2i (t)〉 − 〈εi(t)〉2. (8)

Using equation (5) to express R2
M (t) as a function of µ(t)

we rewrite equation (8) as

σ2(t) = 〈∆α2
i 〉+

〈∆β2
i 〉

〈βi〉2
(〈αi〉2 + 〈εi(t)〉2)

+〈ε2i (t)〉 − 〈εi(t)〉2

−2〈αi〉
〈∆β2

i 〉
〈βi〉2

µ(t) +
〈∆β2

i 〉
〈βi〉2

µ2(t). (9)

The relation between the square variety and the mean
ensemble return is therefore quadratic. This implies that
the single-index model predicts a linear increase of the
variety for large absolute value of the mean µ(t)

σ(t) ≈
√
〈∆β2

i 〉
〈βi〉

|µ(t)|. (10)

The proportionality factor of equation (10) gives a mea-
sure of the inhomogeneity of the portfolio with respect to
the market factor. Hence the increase of the variety for
large values of |µ(t)| is due to the inhomogeneity of the
portfolio in following the market behavior. This result is
independent of the statistics of the noise terms.

Equation (10) is valid only for large values of |µ(t)|.
To obtain a general expression of the square variety as a
function of the single-index model parameters we need to
make explicit the terms 〈ε2i (t)〉 and 〈εi(t)〉2 of equations (8)
and (9). The term 〈ε2i (t)〉 is proportional to the sum of
the squares of n independent random variables each with
mean equals to σ2

εi and variance which is dependent on the
statistical properties of εi. We indicate the time variance
of ε2i (t) with vi. By applying the central limit theorem one
can show that [〈ε2i (t)〉] is equals to 〈σ2

εi〉 and the variance
of 〈ε2i (t)〉 is 〈vi〉/n.

Let us now assume that the noise variables εi(t) are
Gaussian. In this case the variance of ε2i is given by
vi = 2σ4

εi . By using this property, we conclude that the
first two central moments of the random variable 〈ε2i (t)〉
are for Gaussian noise terms

[〈ε2i (t)〉] = 〈σ2
εi〉 (11)[

∆〈ε2i (t)〉2
]

=
2
n
〈σ4
εi〉. (12)

The term 〈εi(t)〉2 is the square of a single Gaussian vari-
able and is distributed according to the Gamma function
fa,ν [12] with a = n/(2〈σ2

εi〉) and ν = 1/2. The mean of
this term is 〈σ2

εi〉/n and the variance is 2〈σ2
εi〉2/n2. Hence,

we conclude that

〈ε2i (t)〉 − 〈εi(t)〉2 ≈ 〈ε2i (t)〉. (13)

By using equations (8), (11-12) and (13) we can explicitly
write down the first two temporal moments of the random
variable σ2(t)

[σ2(t)] = 〈∆α2
i 〉+ 〈∆β2

i 〉[R2
M (t)] + 〈σ2

εi〉 (14)[
∆(σ2(t))2

]
=

〈∆β2
i 〉2([R4

M (t)]− [R2
M (t)]2) +

2
n
〈σ4
εi〉. (15)

The validity of equation (14) is independent of the Gaus-
sian assumption for the statistical properties of noise
terms. On the other hand, equation (15) is valid only for
Gaussian noise terms and for a market factor with finite
fourth moment.

3.2 Comparison with empirical and surrogate data

In order to verify the relation between mean and variance
predicted by the single-index model we generate surrogate
data of an “artificial” market according to equation (4).
The investigation of empirical data and the associated
study of surrogate data are performed by considering the
set of 1071 stocks traded continuously in the NYSE in
the time period 1987-1998. By using the ordinary least
square method we estimate the model parameters αi, βi
and σ2

εi for all the stocks of our ensemble. We recall that
the best estimate of the model parameters does not de-
pend on the statistical properties of noise terms. In Ta-
ble 1 we show the ensemble mean and standard deviation
of these parameters. The Standard and Poor’s 500 index
is chosen by us as the market factor RM (t). It assumes
the following values for the first two temporal moments
[RM(t)] = 5.80 × 10−4 and [∆RM (t)2] = 1.02 × 10−2 in
the investigated time period. The time series of surrogate
data are generated by using the above cited parameters
and market factor. To check the role of the statistical prop-
erties of the noise terms we consider two different choices
for εi(t) –(i) noise terms with Gaussian statistics and (ii)
noise terms with non-Gaussian statistics. For the case (ii)
we assume that εi(t) = σεiw(t), where w(t) is a random
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Table 1. Value of the ensemble mean and standard deviation
of the single-index model parameters obtained from empiri-
cal data with least square method by using the Standard and
Poor’s 500 index as market factor. The portfolio is composed
by the 1071 stocks continuously traded in the New York Stock
Exchange during the period 1987-1998.

Parameter mean standard deviation

αi 2.02× 10−4 3.93 × 10−4

βi 6.39× 10−1 3.06 × 10−1

σ2
εi 5.47× 10−4 6.69 × 10−4
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Fig. 3. Time series of the variety σ(t) of surrogate data gen-
erated by using a single-index model with Student’s t noise
terms with κ = 3. The parameters of the single-index model
are given in Table 1 and the market factor is the Standard and
Poor’s 500 index. The considered time periods are the same
as in Figure 2. They consist in a 200 trading days time inter-
val centered at 19 October 1987 (top panel), 27 October 1997
(middle panel), and 31 August 1998 (bottom panel). In all the
three panels we set the value 0 in the abscissa at the crash
day. The aftershock periods observed in empirical data are not
present in surrogate data.

variable distributed according to a Student’s t probability
density function

P (w) =
Cκ

(1 + w2/κ)(κ+1)/2
, (16)

where Cκ is a normalization constant. Empirical investi-
gations of real data [13–15] indicates a value between 4
and 6 for the power-law exponent of P (w) for large values
of |w|. In our simulation we take the most leptokurtic dis-
tribution within this interval which corresponds to κ = 3.

We analyze the surrogate data in the same way used to
investigate empirical data. In Figure 3 we show the time
series of the variety corresponding to the same time peri-
ods of Figure 2 obtained for the surrogate data with Stu-
dent’s t noise terms. The time series of Figure 3 are rather
different from the ones shown in Figure 2. A similar behav-
ior is observed for the surrogate data with Gaussian noise
terms. In Figure 3 the increases of the variety occurring

Table 2. Time average and standard deviation of µ(t) for
empirical data, the theoretical prediction of the single-index
model (Eqs. (6) and (7)) and surrogate data generated accord-
ing to equation (4) with Gaussian and Student’s t noise terms
with κ = 3.

µ(t) mean standard deviation

data 5.6 × 10−4 73.7 × 10−4

theory 5.7 × 10−4 65.8 × 10−4

Gaussian 5.8 × 10−4 65.7 × 10−4

Student 5.6 × 10−4 65.9 × 10−4

Table 3. Time average and standard deviation of σ2(t) for
empirical data, the theoretical prediction of the single-index
model (Eqs. (14) and (15)) and surrogate data generated ac-
cording to equation (4) with Gaussian and Student’s t noise
terms with κ = 3.

σ2(t) mean standard deviation

data 5.4× 10−4 3.8 × 10−4

theory 5.8× 10−4 8.5 × 10−5

Gaussian 5.6× 10−4 8.4 × 10−5

Student 5.6× 10−4 2.2 × 10−4

at the crash day is still evident in all cases but surrogate
data are not able to describe the long aftershock period
observed in empirical data. In other words the temporal
asymmetry with respect to crash day observed in empirical
data is not reproduced by the single-index model in spite
of the fact that the behavior of µ(t) is well reproduced by
the single-index model for all the considered time periods.
This suggests that the variety of a stock portfolio is more
sensitive to temporal asymmetry than the market factor
RM(t). Moreover, a detailed analysis of Figure 2 shows
that the day of highest variety is always the crash days
in the surrogate data whereas in Section 2 we noted that
the day of highest variety is the day after the crash in
empirical data.

To make a quantitative comparison between empirical
data, surrogate data and the theoretical predictions of the
single-index model we study some statistical properties of
µ(t) and σ2(t). Table 2 shows the temporal mean and
the standard deviation of µ(t) for (i) empirical data, (ii)
single-index theoretical prediction based on equations (6)
and (7) and using the model parameters of Table 1, (iii)
surrogate data with Gaussian statistics of the noise terms,
and (iv) surrogate data with Student’s t statistics of the
noise terms.

The agreement between the results obtained for empir-
ical and surrogate data with the theoretical predictions of
the single-index model is pretty good. As stated in section
3.1 the mean and the standard deviation of µ(t) are not
significantly affected by the statistical properties of the
noise terms. This result has been observed in reference [7]
in numerical simulations.

In Table 3 we show the values of the mean and stan-
dard deviation of σ2(t) for the same sets of data and
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Fig. 4. Square variety σ2(t) of the ensemble return distribu-
tion as a function of the mean µ(t) for each trading day of the
investigated time period. Each black circle refers to one trad-
ing day for empirical data. The white circles are the results
obtained by analyzing surrogate data generated according to
the single-index model with Gaussian noise terms. The dashed
line is the theoretical prediction of equation (17) with the pa-
rameters of Table 1.

theoretical predictions as in Table 2. It is worth point-
ing out that the theoretical value of the standard devia-
tion of σ2(t) is obtained under the assumption of Gaussian
statistics for noise terms. The same quantity diverges un-
der the assumption of Student’s-t noise terms with κ ≤ 4.
We find that the mean value of σ2(t) is approximately
reproduced by both Gaussian and Student’s t surrogate
data. The theoretical estimation of equation (14) with the
model parameters of Table 1 is also close to the empirical
value. However a different conclusion is obtained for the
standard deviation of σ2(t). None of the values obtained
from the theoretical estimation and numerical simulation
of surrogate data is able to explain the value observed
in empirical data. This is not due to the fact that the
theoretical prediction is inaccurate because the theoret-
ical prediction well describes the case of surrogate data
with Gaussian noise terms. Hence, the different value de-
tected in the empirical analysis of the standard deviation
of σ2(t) is a clear manifestation of the limit of the single-
index model. This model is able to describe the behavior
of µ(t) but it is not able to describe the square variety of
the portfolio properly.

To support the above conclusion we now consider in
more detail the relation between σ2(t) and µ(t) of the
ensemble return distribution. The values of the model
parameters are such that equation (9) can be approxi-
mated as

σ2(t) ≈ 〈σ2
εi〉 − 2〈αi〉

〈∆β2
i 〉

〈βi〉2
µ(t)

+
〈∆β2

i 〉
〈βi〉2

µ2(t). (17)

Figure 4 shows the square of the variety σ2(t) as a func-
tion of the mean µ(t) for each trading day of the investi-
gated period. In the figure each circle refers to a different
trading day. The filled circle are obtained from the real
data whereas the empty circles are obtained from surro-
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Fig. 5. Square variety σ2(t) of the ensemble return distribu-
tion as a function of the mean µ(t) for each trading day of the
investigated time period. Each black circle refers to one trad-
ing day for empirical data. The white circles are the results
obtained by analyzing surrogate data generated according to
the single-index model with Student’s t noise terms with κ = 3.
The dashed line is the theoretical prediction of equation (17)
with the parameters of Table 1.

gate data generated according to equation (4) and by us-
ing a Gaussian statistics for the noise terms. The dashed
line is obtained from equation (17) by using the values of
the model parameters listed in Table 1. Figure 5 is the
same as Figure 4 but the empty circles are surrogate data
obtained by assuming a Student’s t statistics for the noise
terms.

The agreement between the results obtained for the
Gaussian surrogate data and the theoretical prediction is
very good. This is due to the fact that the statistical uncer-
tainty associated to the curve described by equation (17)
for a set of 1071 stocks is of the order of the standard de-
viation of the random variable 〈ε2i (t)〉. This quantity is the
square root of equation (12) and it is equal to 3.8× 10−5

for the model parameters of Table 1. This error is very
small with respect to the scale of Figure 4 and therefore
the empty circles cluster very close to the dashed line. On
the other hand for the single-index model with Student’s
t noise terms the standard deviation of 〈ε2i (t)〉 diverges
and for this reason the dashed curve in Figure 5 describes
well the average behavior of the square variety but large
fluctuations around the average behavior are observed.

We finally compare the theoretical prediction and the
behavior of surrogate data with the results obtained in
the empirical analysis (filled circles in Figs. 4 and 5). The
empirical data are on average approximately described by
the single-index model but the fluctuation of the empiri-
cal results around the theoretical line is much larger than
the one predicted by the single-index model with Gaus-
sian noise terms and it is larger than the one observed in
the simulated surrogate data with Student’s t noise terms.
Moreover, in the presence of large values of |µ(t)| the dis-
crepancy between the empirical data and the prediction
of the single-index model becomes progressively more pro-
nounced. In particular, for large values of |µ(t)| the square
variety is much larger than the value predicted by the
single-index model. For large values of |µ(t)|, we observe
a different behavior in crash and rally days. Specifically,
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the variety of the portfolio has a relative increase with
respect to the theoretical prediction of the single-index
model which is larger for rally than for crash days.

4 Conclusions

The present study investigates the behavior of the variety
of a portfolio of stocks in normal and extreme days of mar-
ket activity. The variety of a portfolio of stocks carries in-
formation about the market activity which is not included
in simple models of financial markets such as the single-
index model. The time evolution of the variety shows a
breaking of temporal symmetry at the crash days. In fact
aftershock periods of the variety are clearly observed only
in empirical data whereas the surrogate data of the single-
index model show a time evolution which is approximately
time reversal. This is observed even if one uses the empir-
ical time series of the Standard and Poor’s 500 index as
market factor. In other words the time series of the variety
is showing the time arrow much better than any market
factor. Independent evidence of absence of time reversal of
the statistical properties of financial time series has been
given in reference [16]

A second point considered in our study concerns the
value of the variety observed in empirical data and the dif-
ference between it and the value predicted by the single-
index model. The single-index model is able to mimic the
average behavior of the square variety but fails in describ-
ing quantitatively the correct relation between the square
variety and the mean return of the ensemble distribution.
In particular the difference between empirical data and
theoretical description is more pronounced for large pos-
itive values of the mean return of the ensemble distribu-
tion. Other significant deviations are also observed for
extreme negative values of the mean return. A large
spreading around the theoretical curve is observed in the
entire µ(t) axis. This spreading cannot be simply ex-
plained as statistical uncertainty due to the presence of
noise terms. In fact surrogate data both with Gaussian
and Student’s t noise terms are able to explain only part
of the spreading.

A possible interpretation of the deviations of the
empirical values of the square variety from the theoretical
predictions of the single-index model observed in crash
and rally days of financial markets is that the portfolio
of stocks undergoes a change of the βi parameters in
the presence of large movements of the market. Under
this interpretation, the different behavior in crash and
rally days could reflect the existence of a different degree

of homogeneity of the market. In particular, within this
framework, empirical data indicates that the market inho-
mogeneity increases more during rally than during crash
days.
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